Discrete approximations of the affine Gaussian derivative model for visual receptive fields

نویسنده

  • Tony Lindeberg
چکیده

The affine Gaussian derivative model can in several respects be regarded as a canonical model for receptive fields over a spatial image domain: (i) it can be derived by necessity from scale-space axioms that reflect structural properties of the world, (ii) it constitutes an excellent model for the receptive fields of simple cells in the primary visual cortex and (iii) it is covariant under affine image deformations, which enables more accurate modelling of image measurements under the local image deformations caused by the perspective mapping, compared to the more commonly used Gaussian derivative model based on derivatives of the rotationally symmetric Gaussian kernel. This paper presents a theory for discretizing the affine Gaussian scale-space concept underlying the affine Gaussian derivative model, so that scale-space properties hold also for the discrete implementation. Two ways of discretizing spatial smoothing with affine Gaussian kernels are presented: (i) by solving semi-discretized affine diffusion equation, which has derived by necessity from the requirements of a semi-group structure over scale as parameterized by a family of spatial covariance matrices and obeying non-creation of new structures from any finer to any coarser scale in terms of nonenhancement of local extrema and (ii) approximating these semi-discrete affine receptive fields by parameterized families of 3× 3-kernels as obtained from an additional discretization along the scale direction. The latter discrete approach can be optionally complemented by spatial subsampling at coarser scales, leading to the notion of affine hybrid pyramids. For the first approach, we show how the solutions can be computed from a closed form expression for the Fourier transform, and analyse how a remaining degree of freedom in the theory can be explored to ensure a positive discretization and optionally achieve higher-order discrete approximation of the angular dependency of the discrete affine Gaussian receptive fields. For the second approach, we analyse how the step length in the scale direction can be determined, given the requirements of a positive discretization. We do also show how discrete directional derivative approximations can be efficiently implemented to approximate affine Gaussian derivatives. Using these theoretical results, we outline hybrid architectures for discrete approximations of affine covariant receptive field families, to be used as a first processing layer for affine covariant and affine invariant visual operations at higher levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gaussian derivative model for spatial-temporal vision: I. Cortical model.

How do we see the motion of objects as well as their shapes? The Gaussian Derivative (GD) spatial model is extended to time to help answer this question. The GD spatio-temporal model requires only two numbers to describe the complete three-dimensional space-time shapes of individual receptive fields in primate visual cortex. These two numbers are the derivative numbers along the respective spat...

متن کامل

The Gaussian derivative model for spatial-temporal vision: II. Cortical data.

Receptive fields of simple cells in the primate visual cortex were well fit in the space and time domains by the Gaussian Derivative (GD) model for spatio-temporal vision. All 23 fields in the data sample could be fit by one equation. varying only a single shape number and nine geometric transformation parameters. A difference-of-offset-Gaussians (DOOG) mechanism for the GD model also fit the d...

متن کامل

Evaluation of Sets of Oriented and Non-Oriented Receptive Fields as Local Descriptors

Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The ...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Verification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme

In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017